
Securing Tactical Ad-hoc Networks
Based on CRAN Protocol

David Lopes
Academia Militar, Lisboa

Instituto Superior Tcnico, Lisboa
Email: david.f.r.lopes@tecnico.ulisboa.pt

Abstract—The most valuable commodity of this century is
information. Its aquisition allows commanders in the battlefield
to make better and faster decisions. Consequently, it is as
important to deny the enemy access to information, as it is
for our forces to acquire it.

The existence of battlefield management systems allows the
commander of a specific force to access useful information,
aiding the process of decision making. These systems are
considered by the enemy as a rewarding target. This happens
due to the concentration of information regarding our forces
and the battlefield. With that said, the safety of these systems
must be a priority.

CRAN is a protocol that provides support to these systems
and it was designed to work at the lower hierarchical levels,
form platton to battalion. However, the security of this protocol
was not designed, leaving its concern to other means.

In the present study, a key distribution system for mobile
Ad-hoc networks is designed, which significantly increases the
security of the CRAN protocol. The aim of this system is
that the exchange of CRAN’s messages, among participating
elements, occurs under a cipher. This cipher is generated by
the key that this system is designed to manage safely. This way,
confidentiality and data integrity are ensured to CRAN mes-
sages. The proposed system features include adition/removal of
nodes to/from the network and, consequently, key refreshing. It
also has the capability to adapt in real time to the destruction
of any node and to the partitioning of the network into several
groups.

The impact of the proposed system was measured for
different scenarios and node quantity, focusing primarily in
time needed for the network to become coherent with reality.
Network traffic was also evaluated along with the amount of
lost and, consequently, resent messages.

1. Introduction

Nowadays, in the battlefield, it is extremly important
to make the best decisions possible, and to do so in the
fastest way, it is necessary to have every useful information
available. This concerns to the higher hierarchical levels
aswell as to the lower ones. This information is acquired
by the forces present in the battlefield and it is pertinent
to make it reach every element within the unit. With that

said, there is an effort made by the portuguese armed
forces, in the development and improvement of battlefield
management systems (BMS). These BMSs aim to provide
continuous updates of the battlefield state, increasing our
forces awareness, which leads to a better decision making,
and consequently, an improvement on the mission results.

The acquisition of information, it’s denial to the enemy
and the dissemination of counterintelligence, are of extreme
importance to any military force nowadays, which makes
BMSs rewarding targets to the enemy. In that sense, the
safety of this systems must become a priority, ensuring
confidentiality, data integrity, authentication, access control,
protection against replay and non-repudiation.

In [1], it is proposed a protocol (CRAN) designed for
mobile Ad-hoc networks (MANET), which supports BMSs,
operating at the lower hierarchical levels (platoon to bat-
talion). This protocol ensures the continuous update of it’s
network topology and the forwarding of tactical messages
(TM). A TM is basically a message that comes from a higher
layer, it is treated, by this protocol, as data to be forwarded
to every node in the network. CRAN has no other concerns
regarding the data within TMs.

This protocol revealed efficiency in respect to informa-
tion sharing within the hierarchical levels to which it was
designed to operate. All, with a high message delivery ratio
and use of low bandwidth. However, it lacks in security
against enemy hacks. The need to develop a key distribuition
system which allows the safe use of this protocol, arrises
in this context, and is adressed in this paper. Besides the
protection against enemy hacks, it is necessary to consider
other problems that arrise from this type of networks, such
as low bandwidth availability, high latency and high mobil-
ity. This takes the problem to a trade-off between security
and network funcionality.

The system proposed in this paper, aims to provide
security to CRAN protocol through key distribution and its
use to cipher CRAN’s messages. Therefore, the system must
provide the following features:

• Node adition to the network, providing the key that
allows access to CRAN’s messages;

• Node removal from the network, granting confiden-
tiality of future CRAN messages;



• Node eviction from the network, in case it is needed
to force a node out of the network;

• Coexistence of 2 or more units using this protocol,
without mutual interference.

The system should also have the capacity to adapt in
real time to network changes, namely:

• Node destruction or neutralization;
• Network partition in several groups, whether by

nodes being out of reach, obstacles in the field or
due to jamming.

The remainder of the paper is organized as follows. Sec-
tion 2 depicts the background, in which there are adressed
relevant concepts and security systems to the development of
the system proposed. Section 3 presents a proposal for a key
distribution system that grants security to CRAN. In section
4, shows the simulation results of the previously proposed
system. Finally, section 5 describes the main conclusions of
this paper and future work proposals.

2. Background

This section presents related work and concepts, which
were useful to the development of the system proposed in
section 3.

2.1. CRAN (Cognitive Routable Ad-hoc Network)

To adress the needs of communication between lower
hierarchical level’s unit elements, and in that way improve
the results of the mission, it was proposed in [1], a Cogni-
tive Routeable Ad-hoc Network protocol (CRAN). Figure 1
depicts the envisioned network architecture.

Figure 1. Network architecture [1].

This protocol, besides having in consideration the hi-
erarchical military structure, it also takes advantage of the
broadcast nature of the wireless communications to perform
the node discovery and topology adaptation. CRAN contains
2 planes: the control plane, which is in charge of the
node discovery and topology adaptation, and the data plane,
which is in charge of forwarding TMs whithin the platoon.

The discovery process is the mechanism in which an
element becomes aware of its neighbours. To do so, each
element periodically sends a Keep Alive message. In case
the sending element is not yet known by it’s neighbours and
vice-versa, the discovery process is initialized, where every
participant elements share their network knowledge through
Link Request and Link Reply messages. Basically, the dis-
covery process works as a 3-way handshake as depicted in
Figure 2 , it makes use of the 3 types of messages referred
previously to ensure synchronization between participating
elements.

Figure 2. 3-way handshake [1].

Associated to this 3-way handshake, there’s a finite state
machine (FSM), presented in Figure 3, which ensures the
delivery of the messages exchagend during the discovery
process.

Figure 3. Discovery process FSM [1].

The topology adaptation process is in charge of the
continuous update of the network topology and it’s cru-
cial in MANETs to ensure that it remains consistent. This
is because there is frequent connection disruption or es-
tablishment due to changes in elements postioning. This
process is initialized everytime a connection is established



or disrupted. The node that detected this event, becomes
responsible to forward it’s information through an Update
message.

The data plane, ensures the distribution of TMs through-
out the platoon. Once both planes are independent, they can
work simultaneously. Whenever a node needs to send a TM,
it broadcasts that message only once. It’s neighbours will
rebroadcast it in turn, and so on. This method grants the
forwarding of the TM through every platoom node.

Throughout this section, the diferent types of messages
within this protocol were partially addressed, those being:

• Keep Alive - Used to announce the respective nodes
presence;

• Link Request and Link Response - Used to mediate
and finish the discovery process, respectively;

• Update - Used to forward the awareness of topology
changes;

• Tactical Messages - Used for data sharing between
every network elements.

The formats of this message types are presented in figure
4.

Figure 4. CRAN messages format [1].

The results presented by this protocol, concerning the
maintenance of network topology data in each node, show
that the bandwidth required is reduced and matches the
one available in military scenarios. Regarding the elapsed
time between detecting a change in network topology and
disseminating it to every node in the network, is in the order
of hundreds of miliseconds. It also depends on the topology
of the network at that time and increases proportionally with
the number of nodes.

On a side note, even though the results have been
obtained through tests executed in military scenarios, this
protocol may also be used in civil scenarios.

2.2. Encryption algorithms

2.2.1. Symmetric-key ciphers. According to [2],
symmetric-key ciphers are based on the use of two
keys. Those keys are known by the nodes that intend to
comunicate, one by each node. Each of the keys can decrypt
a message originally encrypted by the other. However, in
most practical symmetric-key schemes, both keys are the
same, allowing the existence of only one key, which can
decrypt a message previously encrypted by that same key.

This also allows the comunication between more than 2
nodes.

It is extremly important that no other node, that is not in
the communication group, has access to the key. Otherwise,
the confidentiality of the communication is compromised.
That’s why there are issues in finding efficient methods
to exchange keys securely, if they were not previously
exchanged [2]. Those problems are called, key distribution
problems and will be introduced further in this paper.

Onde more, according to [2], the most well known sym-
metric encryption algorithms are, Data Encryption standard
(DES) and Advanced Encryption Standard (AES).

2.2.2. Public-key ciphers. According to [3], public-key
ciphers are based on the use of 2 different keys: public key
and private key. The public key may be known by every
node in the network, meanwhile the private key must be
known only by the node to which the encrypted message is
sent to. None of this keys can decrypt a message that was
encrypted by itseld in the first place. This way, it is possible
to spread the knowledge of the public key throughout the
network, once only the node that knows the private key is
able to decrypt the messages encrypted by the public key.
For that reason, the private key can’t be known by any other
node, in order to avoid the decryption of messages by them,
compromising the confidentiality of the network. It is also
importante to state, for the reasons mentioned above, that it
should not be possible to obtain one of the keys from the
other.

The use of this cipher schemes, carry a higher compu-
tational cost comparing to symmetric-key’s. The most used
schemes are, Rivest Shamir Adleman (RSA) and Elliptic
Curve Cryptography (ECC). The use of this ciphers, allows
a safe key distribution between nodes and digital signing of
messages, something that is not possible with symmetric-
key schemes.

According to [4], for the same security level, Elliptic
Curve algorithms, make use of smaller parameters when
compared to RSA. This smaller parameters, translate into
advantages regarding cipher’s processing speed, key sizes
and, consequently, certificates. This feature was extremely
important for the system’s development, presented in section
3.

2.3. Digital signature

As mentioned in [2], digital signature is a primordial
cryptographic concept to ensure authentication, data in-
tegrity and non-repudiation of a message. This concept
provides a mean to bind an entity to a piece of information,
i.e. a message.

The signing process is done by, transforming the mes-
sage and some secret information (usually, a private key)
into a tag. This is called signature, and it denies the pos-
sibility for other entities, to falsificate it, once they do not
have acess to the private-key. Finally, the pair (message,
signature) is sent, allowing any other entity to receive the
message with garanties of authentication, data integrity and



non-repudiation. To do so, the receivers of the message must
verify the signature using the sender’s entity public key.

The use of this primitive is essential to the proposed
system in section 3, once this is what ensures the security
concepts referred previously (authentication, data integrity
and non-repudiation).

2.4. Certificates

According to [5], certificates are strutured documents
predefined in a certain way, which contain information
regarding a specific entity. This certificates are issued by a
Certification Authority (CA). They have a limited validity,
and it can be controled in 2 ways: an expiration date
contained whitin the certificate itself, or through the issuing
of a revocation certificate. The last one targets a specific
public key, belonging to a certain entity, stipulating that it
is no longer valid, starting in a particular date.

This certificates are important to the system presented
in (ref), however, the standard format X.509 usually used
in the vast majority of the systems, carries a high overhead
if they are to be sent through the network. Considering the
implications of the system’s design regarding bandwidth, the
need to use smaller certificates arrises.

[6] presents several certificate models smaller than
the format X.509. Even though, none of them addressed
the possibility of containing optional information, it was
possible to use their core ideas and implement them in the
proposed system. Those ideas are based in certificate chain,
in which, the higher level belongs to the CA’s certificate.
This certificate may contain information that is common
to every other entity in the network (i.e. digital signature
algorithm), allowing lower level certificates to not carry
that information, therefore becoming smaller. It is important
to state that, this idea is only advantageous if the CA’s
certificate is known by every node within the network.

2.5. Certification Authority

In [7], key management in systems that use public-key
cryptography, is usually adressed with the help of a trusted
entity, the CA, which issues certificates. To do so, it makes
use of its digital signature, allowing authentication of the
node, to which that issued certificate belongs to.

As mentioned in [8], this management needs the CA to
be online at all times, due to the fact that it is the only
entity capable of issuing certificates. With that said, the CA
becomes a critical point in the network, if it is compromised
or its private key is found, then a malicious entity can easly
issue forged certificates or revoke previously issued ones.
An aproach to this problem lies in the replication of CAs.
However, it increases the system’s vulnerability, because it
only takes one of its replics to be compromised, leading to
the same issues mentioned above.

2.6. Key management in MANETs

In MANETs, it is important to consider that a node
operates as a terminal and as an intermediate router in order

to forward traffic to other nodes. Hereupon, the existence
of a malicious node acting as an intermidiate one, which
its objective is to intercept communications, needs to be
considered. Besides the security features that that group key
management should ensure, in MANETs, other factors need
to be considered, like node mobility, available bandwidth
and battery consumption.

In order to adress this concerns, [9] proposed a key dis-
tribution system in which its core idea lies on the existence
of a group leader. This leader is responsible for the key
management within the group. This idea is interesting in
the resolution of the problem proposed in this paper, since
the group leader might be the node of the unit commander,
taking charge of the afore mentioned responsibilities.

This system defines 4 types of keys, however, only 2 of
these types are imporant for this matter, namely:

• Group key (symmetric-key) - Used by every group
member, to encrypt and decrypt messages shared
within the group;

• Public and private key pair - Every node has a pair
of these keys associated to it, used mainly for safe
distribution of the group key.

The group leader generates a group key for its group.
This key is refreshed everytime a member is added or
removed from the group, ensuring perfect forward secrecy
(PFS) of the messages shared within the group.

2.6.1. Member adition. The first thing to be done after
a request to join the group is made by a node, is an au-
thentication challenge between the leader and the requestor.
Unfortunatly, [9] does not clarify how this challenge is
made.

After the authentication challenge is completed, the re-
questor sends its certificate to the leader. Once received,
the leader verifies if the certificate is valid and obtains the
requestor’s public key. Afterwards, the leader sends to the
requestor a new message encrypted with its public key,
containing: the assigned identification and a shared key
(symmetric key), shared between them both. The following
step includes the update of the group member’s list and a
the generation of a new group key. This data is sent to the
new group member, encrypted by the shared key.

Finally, the leader sends the new group key aswell as
the updated group member’s list, encrypted by the former
group key, to every other group member. Figure 5, depicts
the described process.

2.6.2. Member removal. In order to remove a member
from the group, the leader generates a new group key and
updates the group member’s list without the node targeted
for removal. Afterwards, the leader sends the new group key
and list data to every member (excluding the removed one),
encrypted by the public key of each respective member. This
process is presented in Figure 6.



Figure 5. Member adition process.

Figure 6. Member removal process.

3. Implementation

The system proposed in this paper was designed tak-
ing into account the technical features of a MANET with
low bandwidth. This system aims to ensure confidential-
ity, integrity, authentication, protection against replication
and non-repudiation of CRAN’s messages. The primordial
idea is, therefore, to use the minimum possible bandwidth
without compromising security. To this end, 5 different
message types were created: Join Request, Join Reply, Leave
Request, Leave Reply and Key Refresh. Nevertheless, some
fields were added to an already existing CRAN message,
the Keep Alive message.

It was also taken into account the type of keys needed
to ensure the functioning of the system.. Other concepts,
such as identifiers, patents and certificates will be presented
throughout this section, as well as their contribution to the
functioning of the security system

The way this system was designed, took into account the
hierarchical structure of the Armed Forces (AF), therefore,
the existence of a leader is crucial. The process of leader

election was based in a previously designated hierarchy,
similar to real election process in the AFs, where, the
coomander (leader) the highest ranked soldier. This process
has the capability to elect a new leader on-the-fly if, for
some reason, the leader node is out of reach or neutralized.
With this, there is always an entity responsible for the group.
This process may also occur when there is a group partition
into several subgroups (whether it happens due to nodes
being out of reach, or obstacles that prevent communications
to reach their destination), making sure that there is always
a leader within each subgroup.

The leader node, whoever it might be, will play a key
role in the system’s functioning, since it is the one with the
power to accept or deny requests from other nodes to join
or leave the group. It also has the resposibility to refresh the
group key whenever the number of elements in the group
changes. Some of this system details are inline with the ones
described in 2.6.

CRAN’s original messages, may be shared within the
group between its members under the safety provided by a
symmetric-key cipher. The key used for this cipher, is the
group key.

3.1. Basic concepts

3.1.1. Identifier. Each node participating in this system has
an identifier (ID), assigned by the CA when the certificate
is issued. This ID is unique in the whole network.

3.1.2. Rank. Similar to the IDs, each node has a rank,
assigned by the CA. This concept is important to provide a
hierarchical struture between the nodes, allowing the nom-
ination of a leader throughout the network operation.

3.1.3. Certificate. According to the idea presented in sub-
section 2.4, the certificate model will consist in a two level
certificate chain. The higher level belongs to CA’s certificate.
The lower level belongs to the network node’s certificates,
called subaltern certificates from now on.

As described previosuly, in subsection 2.4, the CA’s
certificate must contain every needed information according
to X.509 format. Therefore, the subaltern certificates may
contain less information, since some of that information
is already detailed in the CA’s certificate and it is the
same to every node in the network. This certificate model
was proposed because there is the need to send certificates
through the network. To that end, they must be as smaller
as possible to reduce the required bandwidth.

3.1.4. Certification Authority. In the development of this
system, it was decided that the CA must be offline, the
reason behind it lies in the fact of it being a rewarding target
to the adversary. If it is intended for the system to be able
to adapt to node neutralization, the CA cannot be online,
otherwise it would be easy for the adversary to compromise
the system by capturing or neutralizing it.

The CA is the entity in charge of issuing certificates to
different nodes that participate in the network. Once it is



offline, the certificates must be issued before the start of the
network. Even though, a node has its certificate issued by
the CA, only the group leader has power to accept it, or not,
within its group.

3.1.5. Message type. The message types created for this
system need to be discerned. With that said, and in order to
maintain the structure of CRAN’s messages, it is necessary
to create a new field (Msg Type). This is the first field in
every message type presented from now on. It is important
because every message has a different algorithm to process
it.

This field differentiates 7 message types, namely: origi-
nal CRAN messages, KA, Join Request, Join Reply, Leave
Request, Leve Reply and Key Refresh.

3.1.6. Nonce. Nonce is the designation of a field that is
present in every message type designed for this system. It’s
principal function is to help in protection against replay. This
field’s generation is based on a time index. This allows the
nodes to record this field at the arrival of the message and
check if it was already received. If that is the case, then the
message is discarded.

3.1.7. Keys. The diferrent types of keys, designed to ensure
security in this system are:

• Group key - Symmetric-key, shared between group
members and used to cipher every CRAN’s message;

• Public and private keys (PubK and PrivK)- Each
node as an assigned pair o assymetric keys, used
for adition or removal of nodes within the group.

3.1.8. Potential leaders queue. Each node has this queue,
it contains the ID’s of the nodes that presented themselves
as group leaders. Those IDs are sorted by rank. Only IDs,
with higher rank then the current leader, are put in the
queue. Those IDs are collected whenever a KA message
is received. This queue helps the leader election process
described further in this section.

3.2. Keep Alive

This is an original CRAN message type, used to an-
nounce a node presence. However, during the development
of this system, 3 fields were added to this message in order
to take advantage of its periodicity, so it could act as a
beacon for the group leader. The added fields are:

• Timestamp (TS) - This field contains a time index,
which indicates the moment that the group leader
generated his KA;

• Signature - TS field is signed by the leader, there-
fore, this field contains that signature;

• Leader certificate - Certificate of the group leader, to
which the node that generated the message belongs.

Figure 7, ilustrates the structure of this message after
the added fields.

Figure 7. Keep Alive format.

The reason behind the TS field is that, the leader needs
to anounce its presence within the group, at a specific
time. Otherwise, it would not be possible to detect group
partitions, rejoining of partitioned groups or even elect new
leaders if necessary.

There are 2 reasons to why the leader’s certificate must
be sent in this message. First, the nodes need to have
access to the leader’s public key in order to validate the
TS. The second, is to give an external node, knowledge of
the leader’s ID, in case it needs to make a request to join
the group.

3.3. Node adition

This process aims to provide tools for an external node
to request access to a group. It is divided into 2 message
types: Join Request and Join Reply. Join Request is sent by
an external node and forwarded through the group members
until it reaches the leader. When the group leader receives
the request, it replies by sending a Join Reply message,
granting or denying access to the group. In case access is
granted, the key is also sent in the Join Reply message.

Join Request message is structured by the following
fields:

• Msg type - Type of message, in this case, Join
Request;

• New leader ID - Identifier of the leader to which the
request is sent;

• Nonce - Protects against the reuse of this message;
• External node signature - External node signs this

message, therefore, this field contains that signature;
• External node certificate - Certificate of the external

node, needed to verify integrity of the message and
authenticate the node issuing the request.

Figure 8, ilustrates the structure of this message.

Figure 8. Join Request format.

Join Reply message is structured by the following fields:

• Msg type - Type of message, in this case, Join Reply;
• External node ID - Identifier of the node to which

the reply is sent;
• Nonce - Copy of the nonce sent previously in Join

Request message;
• Group key - In case the leader accepts the request,

this field is filled with the group key;



• Response - Sucess, if the request was accepted.
Failure otherwise;

• Leader signature - The leader signs this message.

Figure 9, ilustrates the structure of this message.

Figure 9. Join Reply format.

The fields, Nonce, Group key and Response must be
encrypted using the external node public key, ensuring that
only this node has acess to those fields.

3.4. Node removal

This process works similarly to node adition, however,
it is used by nodes within the group to request permition
to leave it. This feature is important, not only because it
notifies the leader about the group changes, but also about
the need of refreshing the group key. As in node adition, this
process is also divided into 2 message types: Leave Request
and Leave Reply. Both of this messages work similarly to
Join request and Join Reply, respectively.

Leave Request message is structured by the following
fields:

• Msg type - Type of message, in this case, Leave
Request;

• Leader ID - Identifier of the leader to which the
request is sent;

• Nonce - Protects against the reuse of this message;
• Leaving node signature - Leaving node signs this

message;
• Leaving node certificate - Certificate of the leaving

node, needed to verify integrity of the message and
authenticate the node issuing the request.

Figure 10, depicts the structure of this message.

Figure 10. Leave Request format.

Leave Reply message is structured by the following
fields:

• Msg type - Type of message, in this case, Leave
Reply;

• Leaving node ID - Identifier of the node to which
the reply is sent;

• Nonce - Protects against the reuse of this message;
• Response - Sucess, if the request was accepted.

Failure otherwise;

• Leader signature - The leader signs this message.

This message’s format presents a few differences regard-
ing Join Reply’s format, in this process there is no need to
send the group key. Figure 11, depicts the structure of this
message.

Figure 11. Leave Reply format.

After a node leaves its group, the group key is refreshed,
ensuring that the left node cannot access further CRAN
messages.

3.5. Node eviction

In order to remove or expell a node from the group, it is
required that the leader refreshes the group key and share it
among the remaining nodes. To do so, it is proposed another
message type, Key Refresh (KR).

Key Refresh message is structured by the following
fields:

• Msg type - Type of message, in this case, Key
Refresh;

• Dest ID - Identifier of the node to which this mes-
sage is sent to, being one of the remaing nodes in
the group;

• Group key - The new group key goes in this field;
• Nonce - Used to avoid message replay.
• Leader signature - The leader signs this message.

Figure 12, shows the structure of this message.

Figure 12. Key Refresh format.

The fields, Nonce and Group key must be encrypted
using the public key of the node to which this message is
sent to, ensuring that only this node has access to those
fields. The number of sent messages is determined by the
number of nodes remaining in the group. It is created a
message of this type for each remaining node.

On a side note, the group leader may be out of reach.
To make sure that the requests and respective replies reach
their destination, the group nodes forward these messages
through the group, acting as intermediates. Therefore, named
intermediate nodes in this situations. This extends to the
message types described in subsections 3.3, 3.4 and this
one.



3.6. Other key aspects

3.6.1. Message forwarding mechanism. In order to avoid
messages to be forwarded indefinetly, each intermediate
node only forwards the same message once. To do so, each
node saves every received message and, when the next one
is received, it compares the message with the previous ones.
By doing so, it is possible for a node to know if a message
has already been forwarded or not. If the message was not
forwarded yet, then the node does that, if not, the message
is discarded.

It is also important to state that every intermediate node
verifies the message integrity before forwarding it. That way,
if the verification fails, the forwarding does not occur, avoid-
ing unnecessary traffic in the network. This also prevents an
adversary, from disturbing the networks functioning through
the continuous injection of messages.

3.6.2. Group partitioning, leader election and rejoin.
These are 3 different concepts, however they are intertwined,
working together to provide adaptability to the proposed
system.

The process of detecting a group partition is simple.
A group partition occurs whenever the TS of the leader
expires without receiving a new one. The nodes that detect
this events, now know that a group partition occurred.

Afterwards, the leader election process takes place. Mak-
ing use of the potential leaders queue, the node starts a
node adition process. The first ID in the queue, represents
the node to which the request must be done. If there is no
IDs in the queue, then the node assumes leadership of the
subgroup.

Assuming both subgroups become in range of each
other, then they automatically rejoin. This happens due to
leader election process being continuous throughout the
network’s lifespan. Basically, one of the subgroup leaders
has higher rank than the other, therefore, the nodes from
the subgroup with lower rank leader, send requests to join
the other subgroup. This will happen until both subgroup
merge, becoming only one.

3.6.3. PFS mode. This mode is designed to grant PFS
(hence the name) to the network. To do so, everytime there
is a node adition, the group key must be refreshed. This
is accomplished with the use of the process described in
subsection 3.5.

Due to key redistribution, when this mode is active, the
network traffic increases. With that said, this mode may be
activated before or during the network funtioning.

4. Performance results

This section presents simulation results obtained using
NS-3 [10]. For each scenario, there were performed simu-
lations with different numbers of subaltern nodes: 1, 5, 10
,20 and 30 nodes. For every combination of scenario and
number of nodes, 10 simulations were made. The principal
point, was to obtain an average value of the time needed

for the system to become coherent with the reality, and its
respective 95% confidence interval.

For a better understanding of the results presented bel-
low, it is important to know the following:

• The period of KA messages was set to 5 seconds;
• The moments in which each node sends its KA, were

distributed evenly throughout this same period (5
seconds), being that, the order defined is ascending
related to node IDs;

• The leader, has always the lowest ID, therefore it is
always the first one to send KAs;

• Once the simulator works synchronously, there was
inserted a random delay in the sending of messages.
Otherwise, the probability of colision was higher
when compared to reality.

4.1. Initial group formation

In the present scenario, it is intended to evaluate the
period of time necessary for a leader to be elected and
all other nodes have been accepted within its group. This
simulations were made with PFS mode, both active and
inactive. In this scenario, every node is in range of each
other, therefore it’s spacial distribution as no effect in the
end results.

The results obtained are depicted in Figure 13. As it is
observable, when PFS mode is active it takes longer for all
the nodes to join the group. This becomes more evident as
the number of nodes increases.

Figure 13. Average time and confidence interval.

4.2. Initial group formation (3 hops)

The only diference between this scenario and the previ-
ous one, lies only in the spacial distribution of the nodes, in
which it was intended, for some nodes, to be at a maximum
of 3 hops from the leader. That distribution is ilustrated in
Figure 14, in which the red node represents the group leader
and the lines represent the nodes in range of each other.

The times obtained in this scenario are significantly
higher in comparison to the previous one. This is caused



5 Nodes

2000 4000 6000
0

2000

4000

6000
10 Nodes

20 Nodes 30 Nodes

Figure 14. Spacial node distribution.

by 2 main reasons. One of them, is the increased network
traffic, since it is required an aditional effort from intermidi-
ate nodes in the forwarding of request to join the group. The
other one, is simply due to the fact that a node that is 3 hops
away from the leader, only receives its information after the
nearer nodes being in the group. In other words, the nodes
in range of the leader join the group in the first place, then
the nodes in the outer layers can join the group, layer by
layer. Therefore, nodes in the third layer take longer to join
the group. Figure 15, corroborates the above statements.

Figure 15. Average time and confidence interval.

4.3. Node leaves group

In this scenario, it was intended measure the time
elapsed when one node leaves the group. The elapsed time is
measured since the node sends a request to leave the group
until it is accepted and the group key gets refreshed. In this
scenario, every node is in range of each other. Also, PFS
mode does not make a diference in this scenario. Simulation
results are shown in Figure 16.

In the present scenario, the process of refreshing the
group key is the most demanding, in what time is con-

Figure 16. Average time and confidence interval.

cerned. Therefore, as the number of nodes within the group
increases, also increases the amount of KR messages being
sent. With that said, the probability of colision between mes-
sages, and consequently their loss, rises. With lost messages,
resends need to be done, taking longer for the new group
key to be known by every remaining node, each time the
group size increases.

Once, there is no key refreshing process for a 1 node
simulation, it was not considered in the results shown.

4.4. Group merge (rejoin)

For this last scenario, it was intended to measure the time
taken to rejoin 2 previously partitioned subgroups, into the
original group. This scenario is quite similar to the previous
one, where the majority of the time is taken by the key
refreshing process.

The results for this simulations only matter in case the
group keys of both subgroups, are different. Otherwise, the
merge would only be measured by the time needed for every
nodes to receive the highest ranked node’s KA. If both keys
are different from each other, the need for node adition
processes arises.

Figure 17, shows the average time needed for every node
to be within the same group and its respective confidence
interval.

Figure 17. Average time and confidence interval.



5. Conclusion

This section presents the conclusions drawn from the
development and simulation of this system. It is divided into
two parts, final considerations regarding the study developed
and proposals for future work.

5.1. Final considerations

The system proposed in this paper, aims primarily, to
deny information about our forces to the adversary. It also
intends to deny the disruption of BMSs through attacks to
CRAN protocol, whether these might be by denial of service
or injection of fake information.

The purpose of these system is to grant security to
CRAN protocol, through a key distribuition within the net-
work and the use of that key (group key) to cipher CRAN’s
messages. Only a node within a group has access to that
group’s key, therefore, some features were designed in order
to provide access control, namely: node adition, removal and
eviction. This control is enforced by he group leader, which
is elected dynamically, using ranks has criteria.

Some other challenges to the development of this system
were, the need for the network to adapt to partitions and
node destruction. That was accomplished by the conjunction
of the detect partition, leader election and rejoin processes.

Even though, the system was developed specifically
to attend CRAN’s features, its functioning is independent.
Therefore, the designed system might be used to ensure
security to other MANET protocols with similar behaviour.

Throughout the simulations, it was possible to apply the
defined concepts and test the accomplishment of its objec-
tives. The increasing number of nodes for each simulated
scenario, allowed the understanding of its impact in system’s
performance, with or without PFS mode active.

5.2. Future work

The possibility to perform tests in a real scenarios and
evaluate its impact in communications and coherence of the
Common Operational Picture (COP), would be an important
asset to this system.

In order to improve the results obtained, a future work
might consider making use of CRAN’s neighbour and topol-
ogy table, to reduce the need for every node within the
group to forward messages. Only the nodes that provide the
shortest route to any other, would need to forward these
messages.

The study of the time needed to encrypt, decrypt, sign
and verify digital signatures, would also be important to
take into account for future works in this system. Hence,
the proposed work should focus primarily on the impact of
these times, in the network’s functioning.

Acknowledgments

The author would like to thank:

• His family for the unconditional support given
throughout his life.

• His supervisors for their guidance during the whole
study;

• CRITICAL Software’s staff involved in the develop-
ment of CRAN protocol;

• His friends and comrades, for their ever present
support.

References

[1] G. Gomes, A. Zquete, and S. Sargento, “Self-adapted protocol for
intra and inter-echelons communications,” in International Telecom-
munications Network Strategy and Planning Symposium - networks,
vol. 1, June 2014, pp. 1 – 1.

[2] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of
Applied Cryptography, 3rd ed. Boca Raton, FL, USA: CRC Press,
Inc., 2006.

[3] N. C. Fernandes, “Anlise de ataques e mecanismos de segurana
em redes ad hoc,” Master’s thesis, Universidade Federal do Rio de
Janeiro, Escola Politcnica, Dezembro 2006.

[4] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

[5] A. Zúquete, “Segurança em redes informáticas,” FCA Editora, 2006.

[6] M. Nyström and J. Brainard, “An x. 509-compatible syntax for com-
pact certificates,” in Secure NetworkingCQRE [Secure]99. Springer,
1999, pp. 76–93.

[7] A. L. d. S. Eduardo da Silva, “Implementao de um esquema de
gerenciamento de chaves auto-organizado para redes ad hoc mveis,”
2007.

[8] L. Zhou, L. Z. Department, and Z. J. Haas, “Securing ad hoc
networks,” 1999, cornell University.

[9] K. K. Chauhan and A. K. S. Sanger, “Securing mobile ad hoc
networks:key management and routing,” CoRR, vol. abs/1205.2432,
2012. [Online]. Available: http://arxiv.org/abs/1205.2432

[10] ns-3 Tutorial, ns-3 Project, Jan. 2010. [Online]. Available:
http://www.nsnam.org/docs/release/tutorial.pdf


